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Several components: model transparency, holistic model interpretability, 
modular-level interpretability, local interpretability for a single prediction or a 
group of predictions.

Proposed levels of evaluating interpretability (Doshi-Velez & Kim, 2017):

1. Application level
2. Human level
3. Function level

Definition (non-mathematical): Interpretability is the degree to which a 
human can consistently explain or interpret why a model makes certain 
decisions.

Interpretability in ML: Why It’s Important
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We may not always need interpretability e.g. in low-risk or extensively studied 
problems, but knowing the why can help us learn more about why a model 
might fail.

Transparency & Ethics: The EU for example mandates that automated decisions 
must be explainable and should respect fundamental rights. 

Interpretability also satisfies human curiosity and learning.

Interpretability helps explain why a model makes certain predictions.

Interpretability in ML: Why It’s Important
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Assume a linear relationship between the input and response variables, for example 

Y = β0 + β1X1 + … + βpXp + ϵ ,
we can predict  

ŷ =          +       X1   +        Xp ,

where the     ’s  are the coefficients in the residual sum of squares (RSS) minimization 
problem, namely

β^ = arg minβ0…βp 𝚺i=0,i=p (yi - ŷi)
2.

The linear coefficients (the β’s) make this model easy to interpret on a modular 
level, and help us see the level of influence each variable has on the prediction.

Interpretable Models: Linear Regression
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In practice however, interpreting linear models can still be hard if there are too many 
variables. There are certain variations of linear regression that can help with this 
problem, such as the sparse models. An example would be the “least absolute 
shrinkage and selection operator,” or lasso regression which minimizes 

RSS subject to 𝚺j=0,j=p |βj| ≤ s.

This is equivalent to minimizing, with regularization, the quantity

RSS + ƛ 𝚺j=0,j=p |βj|, 

where the second term in the quantity is some constant lambda times the L1 norm of 
the coefficients. (Lambda normally chosen using cross-validation to yield the minimal 
β’s). 

Sparse Models & Lasso Regression
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Intuitively, lasso penalizes large models and selects small coefficients. Unintuitively 
(but we will see why), it also yields a model where a number of the coefficients are 0 
or essentially close to 0. This is an example of a sparse regression model, which 
penalizes large models (i.e. lots of features) and performs variable selection.  

The penalization is controlled via lambda: the larger it is, the bigger the sparsity. If 
lambda is small enough, lasso will yield the same results as the least square 
estimates (standard linear regression).

Sparse Models & Lasso Regression
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Having fewer variables often mean better interpretability. 

Your model is explained by only a number of significant features, which reduces 
complexity and increases explainability. This is especially important when your data 
has hundreds or thousands of features; the complexity may be beyond human 
comprehension and there may not be enough observations.

Other methods for introducing sparsity to linear models include feature selection 
processes, subset selection and step-wise procedures e.g. forward and backward 
selection, sparse PCA.

Sparsity & Interpretability
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Sparse Property of Lasso

The variable selection property of lasso regression comes from the L1 regularizer. 
Consider the following figure in 2D problems. In higher dimensions the constraint 
region becomes polytopes (shapes with flat sides/sharp edges).

Courtesy of Introduction to Statistical Learning, G. James, et al.

The red ellipses represent the 
contours of the RSS of lasso (left) 
and ridge regression (right). The solid 
green areas are the corresponding 
constraint functions,                        
and                     .
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Example: UCI Bike Sharing Dataset

Here we are trying to predict the 
number of bike rentals as a function of 
11 variables. As lambda increases the 
response variable depends on smaller 
number of predictors.
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Example: UCI Bike Sharing Dataset

Likely the most 
significant 
features
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Introduction to Statistical Learning with 
Applications in R, Gareth James, et al.

Resources

Interpretable Machine Learning: A Guide for 
Making Black Box Models Explainable, 
Christopher Molnar


