
Unchitta Kan
ukanjana@gmu.edu | unchitta.com
Mar 23, 2022
George Mason University

Getting Map Data from
OpenStreetMap
OSM Data Model & Querying

mailto:ukanjana@gmu.edu
http://unchitta.com

Overview
‣Part I

‣ OSM data model and tags

‣Part II

‣ Intro to Overpass

‣ Overpass QL basics and simple examples

‣ Advanced topics

‣Part III

‣ Demo (let’s try it together)

Part I:  
OpenStreetMap Data Model

OSM Data Model
How are data represented in OSM?

Node Way Relation
Defined by lat, long, along with

unique ID.
Linear feature made up of nodes,

along with unique ID.

Can also be closed way or area.

Collection of member objects
along with relations between

them (“role”), e.g., bus routes.
Must have at least “type” tag.

OSM Data Model
How are data represented in OSM?

Tags provide semantics

Tags
(a.k.a the thing that gives meaning to OSM data objects)

‣ Tags are key-value pairs that describe attributes of OSM data objects

‣ e.g., amenity=cafe or highway=motorway

‣ Free tagging system — an object can have any number of attributes

‣ Useful keys: name, amenity, building, highway, office, shop, public
transport, route

‣ https://wiki.openstreetmap.org/wiki/Map_features

‣ OSM data objects also have other attributes such as user id of contributor,
change log, timestamp, etc.

https://wiki.openstreetmap.org/wiki/Map_features

Exploring OSM objects

https://www.openstreetmap.org/relation/11158003

https://www.openstreetmap.org/relation/11158003

Part II:  
Intro to Overpass API

Querying Data from OSM
via Overpass API

‣ Let’s say you want to find the locations of all parks in Washington D.C. that
are close to a metro stop, or you want to get the coordinates of major
highways in Spain… you can get all of these data via Overpass API

‣ OpenStreetMap API vs Overpass API

‣ Good for querying ~10 million objects in a few minutes by location, tags,
proximity, etc.

‣ Overpass Query Language

‣ Web-based front end: Overpass Turbo -> can export as GeoJSON

‣ http://overpass-turbo.eu/

http://overpass-turbo.eu/

Overpass QL Basics
Tl;dr: chronological logic + everything is a set

‣ Overpass Turbo’s “query wizard” — why bother learning Overpass QL?

‣ Overpass QL is a procedural, imperative language

‣ Commands are executed in sequence, each one altering the shared state
of the program

‣ Each statement ends with a ;

‣ In Overpass QL, sets underlie program state; results are stored in a default set
named _ (unless explicitly named otherwise) and inputs are also read from
this set in the next statement execution (unless explicitly told otherwise)

‣ Sets are referred to using . followed by the set name (e.g., ._)

Overpass QL Basics
Tl;dr: chronological logic + everything is a set

‣ In Overpass QL, sets underlie program state; results are stored in a default set
named _ (unless explicitly named otherwise) and inputs are also read from
this set in the next statement execution (unless explicitly told otherwise)

‣ This means one can also do set operations such as unions and differences

node[name="Foo"];

nwr[name="Foo"]->._;

( 
 node[name="Foo"]; 
 way[name="Bar"]; 
 rel[name="Baz"]; 
)->.a;

Overpass QL Basics
Anatomy of a query

‣ In general, you want to think about:

‣ The type of OSM objects you want to query (node/way/rel/nwr)

‣ Filters

• Spatial (e.g., by proximity, or inside an area or bounding box),  
specified by parentheses (..)

• Attributes/tags, specified by square brackets [..]

‣ Pipelining/set operations, if necessary

‣ Output details (full data, id only, attrs only, geom only, etc)

Example Query 1
Finding parks in Washington D.C.

‣ Data type

‣ Filters (order doesn’t matter)

• Spatial (..)

• Tags [..]

‣ Pipelining/set operations

‣ Output details

area[name="District of Columbia"];

node["leisure"="park"](area);

out;

Example Query 2
Finding supermarkets in Washington D.C. within walking distance
from a public transit stop

area["name"="District of Columbia"] -> .dc;

node(area.dc)["public_transport"="station"];

node["shop"="supermarket"](around:1000);

out;

Advanced Topics

‣ Outputs

‣ Recursing up/down

‣ Regular expressions

‣ If conditions

‣ Aggregations

area[name="District of Columbia"];

/* 
Search for park relations with  
names ending with "park" (case-insensitive) 
*/ 
rel["leisure"="park"]["name"~"park$",i](area);

/* 
Nodes are needed to return way/rel coordiantes. 
The following recurse down statement takes the input  
set _ and returns a result set containing all nodes and
ways that are members of the relations in the input set. 
*/ 
(._;>;);

/* 
Print only tag information and bbox center point  
of each object 
*/ 
out tags center;

Part III: Demo 
(Let’s try it together) 
 
http://overpass-turbo.eu/

http://overpass-turbo.eu/

Where to go for more details…
‣ OSM elements 

https://wiki.openstreetmap.org/wiki/Elements

‣ OSM tags  
https://wiki.openstreetmap.org/wiki/Map_features

‣ taginfo  
https://taginfo.openstreetmap.org

‣ Overpass API user’s manual  
https://dev.overpass-api.de/overpass-doc/en/index.html

‣ Overpass QL doc 
https://wiki.openstreetmap.org/wiki/Overpass_API/Overpass_QL

‣ Overpass QL repository of examples 
https://wiki.openstreetmap.org/wiki/Overpass_API/Overpass_API_by_Example

‣ Overpass Turbo doc 
https://wiki.openstreetmap.org/wiki/Overpass_turbo

https://wiki.openstreetmap.org/wiki/Elements
https://wiki.openstreetmap.org/wiki/Map_features
https://taginfo.openstreetmap.org
https://dev.overpass-api.de/overpass-doc/en/index.html
https://wiki.openstreetmap.org/wiki/Overpass_API/Overpass_QL
https://wiki.openstreetmap.org/wiki/Overpass_API/Overpass_API_by_Example
https://wiki.openstreetmap.org/wiki/Overpass_turbo

Slides available at 
unchitta.com/resources

http://unchitta.com/resources

