
Unchitta Kan
ukanjana@gmu.edu | unchitta.com
GGS 692, George Mason University 
Spring 2022

Transit Accessibility Explorer
A Web-based Visualization Tool

mailto:ukanjana@gmu.edu
http://unchitta.com

Overview
‣Part I: Introduction

‣ Context

‣ The project

‣ Accessibility metrics

‣Part II: Live Demo

‣Part III: Data & Web Application

‣ Metric computation

‣ Technology stack and application workflow

‣ Future improvements

Part I:  
Introduction

Accessibility characterizes
the ease of reaching
different destinations from a
starting location

Say you live in NE Washington, DC at the
red marker and you don’t have a car,  

how easily can you get to a supermarket
where you can buy fresh foods?

Why is this important?
‣ Low accessibility could mean lower quality of life, especially without cars

‣ Food deserts => fast food instead of fresh food

‣ Lack of green space access => poorer health outcomes?

‣ Need to take more time off work to make a trip to preventative  
health care facilities => fewer incentives to go

‣ Spatial mismatch of jobs and job seekers

‣ Often related to spatial inequities

‣ Mobility != accessibility

‣ Even though highly critical,
accessibility is not widely adopted
by practitioners/citizens

‣ Transit Accessibility Explorer is a
web-based visualization tool
aimed at increasing public
awareness

‣ Stakeholders can explore
accessibility levels in their cities

Transit
Accessibility

Explorer

‣ Introduce accessibility as a concept

‣ Do the heavy lifting needed to
calculate metrics of accessibility
and visualize them

‣ Allow users to explore relationships
between accessibility and
socioeconomic indicators as well as
potential spatial inequities

3 objectives
of the tool

But wait…

Accessibility as a concept alone is not enough.

We need to define some metrics to measure it!

(In this project, we focus on transit accessibility.)

2 metrics of accessibility
(for this prototype of Transit Accessibility Explorer)

‣ Metric 1: Avg. time to reach the closest community asset of some type
(e.g., a supermarket) starting from a census tract

‣ Metric 2: The number of community assets reachable from a census
tract via public transit within a given time threshold (e.g., 20 minutes)

‣ Accessibility metrics can be computed for many types of community assets

‣ Supermarkets, parks, preventative health care services, libraries

‣ Even jobs! (Accessibility and job spatial mismatch are closely related)

Part II:
Let’s look at the app (+ UI/UX design)
(It’ll make more sense when we come back to discuss technical things.)
Note: I designed the tool with the 3 objectives in mind. 
 
localhost:3000

localhost:3000

Part III:  
Data (Metric Calculation) 
& Web Application

Data: Accessibility Metrics
Main ingredients needed for calculation

‣ Destination locations

• data from OpenStreetMap via Overpass

‣ Transit stops, routes, stop times

• General Transit Feed Specification (GTFS) data via WMATA API

‣ Graph routing algorithm — the bulk of time was spent here

• GTFSpy

Accessibility Metric Calculation
‣ Metric 1 (focus on supermarkets and

buses as the mode of transit)

‣ Recall definition: Avg. time to
reach the closest community
asset of some type

‣ Idea: find the closest supermarket
by bus from each bus stop in a
census tract and average travel
times to these supermarkets over
all origin bus stops in the tract

‣ Large number of origin-destination
stop pairs — use parallel computing to
reduce computation time

‣ For each bus stop in each census
tract in Washington, DC

‣ Calculate travel times to all
other bus stops within walking
distance of a supermarket
(e.g., within a 500m buffer)
using a routing algorithm

‣ Record the fastest time

‣ Average all the fastest times over
all bus stops in a census tract to
get a value for Metric 1 for that
tract

‣ Repeat procedure for all census
tracts in DC

Algorithm Outline

Web Application
Technology Stack

‣ JavaScript

‣ NodeJS
Backend

Frontend ‣ JavaScript

‣ HTML
‣ CSS

‣ Bootstrap

‣ Express

‣ PugJS

Mapping ‣ Mapbox GL JS

Database ‣ N/A (GeoJSON stored on server)

Web Application
Logic & Workflow

user visits url Routes to app page; loads and parses GeoJSON as a string
object and passes it to client side while rendering the page

Creates HTML containers; parses data string as GeoJSON; creates 2 Mapbox
objects and adds GeoJSON data as source.

Adds data layers with manually-defined discrete value stops for colors

Adds mouse-hover event listener to each map for showing popup box

Adds toggleable menu buttons for switching between different data layers

Server-side application

Client-side application

Web Application
Logic & Workflow

…
Add toggleable menu buttons
for switching between different

data layers

Web Application
Logic & Workflow

Add toggle able menu
buttons for switching

between different data
layers

…
Add toggleable menu buttons
for switching between different

data layers

‣ When a button is clicked, the visibility property of the corresponding
data layer is set to ‘visible’; rest of the layers set to ‘none’

‣ The HTML class of clicked button is set to ‘active’; rest of the buttons
are reset to default (i.e., not active)

‣ Toggle visual effects on buttons are achieved using CSS

PugJS + HTML/CSS
+ Bootstrap

Other good learning opportunities

Future Improvements
‣ More consideration in the calculation of the metrics

‣ Travel times by foot using pedestrian street networks

‣ Compute metrics for other types of community assets

‣ Add legends to the maps

‣ Eventually:

‣ Deploy as a live web app

‣ Expand to other cities

‣Your inputs

Get in touch 
ukanjana@gmu.edu

 unchitta.com

http://unchitta.com

